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Abstract: In order to study the evolution of land use and the changes in land cover in Upper Casamance, from Landsat images 
acquired in 1987 and 2018, we used a method of multistage unsupervised classification. Recently developed to mapping and 
quantification of vegetation land cover changes in West-African coastal, this method is based on the following stages: first 
classification (K-means) over 15 classes, interpretation of the spectral signatures of the resulting classes followed by 
reclassification according to the chosen nomenclature, creation of thematic masks, classifications on masks, and finally 
reclassification. With the only difference, our study aims also to contribute, methodologically, to the knowledge of the spectral 
profiles of plant formation types. On a thematic level, the results show that between 1987 and 2018, forest areas decreased by 
377,118.7 ha (or 27.4%), while wooded areas and agricultural and soil surfaces increased by 263,172.4 ha (or 19.1%) and 1560 
75.5 ha (11.3%). In terms of change, deforestation by increasing agricultural and soil surfaces is noted along the border with the 
Gambia, savanization and anthropization is noted along the central part, and stability of forest surfaces followed by a slight 
increase in savannas and agricultural and soil surfaces is noted in the south. 

Keywords: Soil Occupation, Change Maps, Unsupervised Classification, Vegetation Cover, Upper Casamance 

 

1. Introduction 

Monitoring of land use and land cover changes is of major 
interest to States for better management of resources and the 
environment. In West Africa, particularly Senegal, this 
follow-up takes place in a general context marked by 
variability in climate conditions [1] and through deforestation 
and land degradation [2-7] for more than five decades. It 
takes on a particularly interesting dimension through the 
identification, description and analysis of the current process. 

Indeed, FAO studies [8] found that between 1990 and 2015, 
Africa lost 125,238,000 ha of its forest area when Asia, 
Europe and North and Central America experienced a 
significant increase. In Sudano-Sahelian West Africa, [9] 
showed, based on literature studies of ± 10 years between 
1955 and 1995, a loss of 2% of forest area per year during 
this period. In Senegal, the loss is estimated at 1,075,000 ha, 
or 11.49 per cent between 1990 and 2015 [8]. Directly 
impacted by agricultural development, [7] reports that 
woodlands and galleries, as well as Sudanian and Sahelian 

savannas, decreased by 11,930 km² between 1975 and 2013. 
In southern Senegal, particularly in the Vélingara department, 
the loss of vegetation cover is 74,182 ha in 31 years [10]. 

Indeed, with population growth and the strong expansion 
in food demand, vast areas of forest and wooded land are 
converted into agricultural land or pasture land. In addition to 
these needs, wood for energy and service is naturally a major 
contributor to the degradation of forest ecosystems [11]. It is 
also not forgetting the wildfires [12] and the degradation of 
the climatic conditions noted since the 1970s [3, 4, 13, 14], 
which amplified changes in land use and cover. The latter are 
considered to be the main factor in changing vegetation cover 
in West Africa [15]. It determines the zoning of the plant 
cover and the amount of plant biomass. 

Through the tree and its various components, the plant 
cover regulates the climate, captures carbon, protects the soil, 
supplies energy wood, firewood and service, serves as a 
pharmacy, etc. [16-18]. At the Rio 92 conference, it was 
recognized that they are a natural capital and heritage to be 
passed on to future generations [19]. Thereby, any 
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substitutability of this capital leads to adverse environmental 
and socio-economic impacts [6, 20, 21]. Therefore, their 
rational management is in the interests of the countries to 
which they belong, while having a great price for the 
environment. However, a resource cannot be managed 
sustainably without the necessary information on its 
availability. 

For this purpose, remote sensing is positioned as an 
effective and methodical means of evaluation and monitoring 
in time and space. With the availability of satellite images, it 
has become a preferred tool for evaluating plant resources [2, 
5-7, 22-26]. Through classification methods (supervised or 
unsupervised), it matches elements of an image scene 
materialized by pixels, represented by radiometric values, to 
a set of thematic classes known a priori or not [27]. Also 
known as assisted or directed classification [28], supervised 
classification is a method that requires a sufficient number of 
control areas for class definition. This is not the case for 
unsupervised classification. It has the advantage of grouping 
the pixels of an image into spectral classes according to their 
signatures and assigning them a thematic meaning [29, 30]. 
According to [31], the main difference between these two 
classifications is mainly the availability and use of the 
reference data. Thus, it is sometimes impossible to use the 
supervised classification because of the lack of the 
availability of truths on the ground relating to the ancient 
years. Because, the reference data must be from the same 
year as the images to be classified to avoid errors related to 
changes in occupancy between years. This is not always the 

case. In addition, in space remote sensing, vegetation 
mapping is based on the ability to recognize plant formations 
based on their radiometric characteristics according to 
classification criteria [32]. Therefore, the choice of 
classification method is very important. To address these 
situations, this study adopted a method of multistage 
unsupervised classification. It was developed by [33] to study 
landscape dynamics of “Rivières-du-Sud” from Salum Delta 
(Senegal) to Rio Geba (Guinea-Bissau). Recently, it was used 
by [25] to study the dynamics of forest landscapes in 
Southern Senegal. However, these studies did not go into 
detail in terms of differentiating plant formations. Spectral 
profiles of land-use classes do not concern plant formation 
types. In view of this, our study proposes to analyze changes 
in vegetation cover in Upper-Casamance by adopting the 
same method, but at the same time contributing to knowledge 
of the spectral profiles of the different plant formations. 

2. Study Area 

Upper Casamance (or region of Kolda) is located in the 
south of Senegal between 12°20 and 13°40 latitude North, and 
between 13°C and 16°W longitude. It is limited to the East by 
the Tambacounda region (Eastern Senegal), to the West by the 
Sedhiou region (Middle Casamance), to the North by the 
Republic of the Gambia and to the South by the Republics of 
Guinea and Guinea-Bissau (Figure 1). It covers an area of 
13,721 km or 7% of the national territory. It has 14 classified 
forests with a total area of 284 333 ha. 

 

Figure 1. Location of study area in southern Senegal. 

The climate falls within the continental South Sudanese 
domain with annual precipitation between 1000 and 1500 mm 
[34]. To the north, a small, less watered portion belongs to the 
north-suddenly continental domain (annual precipitation 
between 500 and 1000 mm). Like the Sahel countries, the study 
area is marked by the long dry period of the 70s and 80s. A 

discontinuity to wet conditions has been noted since 1999, 
although annual precipitation remains lower than pre-1970 [1]. 

In terms of vegetation, the climate results in formations 
with a Guinean affinity, such as the woodland, the gallery 
forest, the wooded savanna and the wooded to shrub savanna 
(Figure 2a-d). The transformation of the forest into a savanna 
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(savanization) takes place through a mosaic "savanna-forest" 
in which the forest gradually gives way to savanna. 

 

 

 

 

Figure 2. Types of plant formations in the study area (Snapshot: B. Solly, field 

mission 2018). 

As defined during the Yangambi Conference [35, 36], the 
woodland is an " open stand with small and medium-sized 
trees whose crowns are more or less contiguous, the entire 
canopy allowing ample light to filter through; on the ground, 
grasses are scarce and can be mixed with other suffrutescent or 
herbaceous plants." The gallery forest is a closed formation of 
dense forest that accompanies the rivers in the open 
formations and savanna regions thanks to the humidity they 
maintain. The wooded savanna is a formation of "trees and 
shrubs forming a clear canopy that allows light to pass largely" 

[37]. The wooded to shrub savanna is a stand of scattered trees 
and shrubs [36]. It is for the tree savanna, a plant formation 
with trees and shrubs scattered in the grass rug, and for the 
shrub savanna, a plant formation characterized by the 
presence of a continuous herbaceous stratum [35]. 

3. Materials and Methods 

3.1. Materials Used 

To analyze the changes in vegetation cover between 1987 
and 2018, we used images from the Landsat satellite (Table 1). 
This satellite has the advantage of covering our study area 
with available images, free for download 
(http://earthexplorer.usgs.gov/), and with a spatial resolution 
of 30 m for multispectral bands. 

Table 1. Landsat satellite images used. 

Year Date Path Row Satellite Sensor 

1987 
1987/11/20 204 

051 Landsat 5 TM 
1987/12/15 203 

2018 
2018/12/11 204 

051 Landsat 8 OLI_TIRS 
2018/12/04 203 

This resolution is sufficient to map and quantify the 
spatial-temporal evolution of vegetation cover. In addition, the 
months of shooting (dry season) allow a good spectral contrast 
between the herbaceous formations and dense woody 
formations. Two scenes are needed to cover the entire study 
area. This is scene p204r051 and p203r051. 

The data processing was done using the Idrisi TerrSet 
software (for the processing of satellite images) and Arc Gis 
10.5 (for the calculation of surface and the mapping layout). 
During the field tours, we used a GPS type Garmin eTrex 30x 
to take geographic coordinates. 

3.2. The Steps of Image Processing 

The processing of the images took place in several stages 
which are: the geometric correction, the combination of bands 
followed by the photointerpretation, the classification with its 
substages, and the confrontation with the reference data. 

3.2.1. Geometric Correction 

The geometric correction of satellite images is a key step 
before any operation. Because images are taken by different 
sensors at different times, they have geometric shifts that must 
be corrected so that they can be superimposed [10, 33]. For 
this purpose, we used the geo-referencing method of image by 
image with choice of four bitter dots from the 2018 image 
used as reference. A second-degree polygon with a selected 
number of Ground Control Points (GCP) greater than (n+1)² is 
used to initiate the correction. 

3.2.2. Combination of Bands and Photo-interpretation 

After bringing the images back to the same geometry, we 
have mosaicked the strips of the two scenes for each of the 
dates. Thereafter, we combined the PIR, Red, and ACP 1 (after 
performing the PCA) band with the RGB channels for each 
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date to identify, through a visual interpretation, the land-use 
units to be mapped. Conventional interpretation techniques 
using the image characteristics such as the color and shape of 
objects are used. They are supplemented by documentation, 
land-use maps, and field work. On the basis of these elements, 
we identified and decided to map eight classes, with different 

spectral characteristics, including four types of the plant 
formations (woodland, gallery forest, wooded savanna, and 
shrub savanna), the burns (areas affected by fire at the time the 
images were taken), the agricultural and soil surfaces, the 
plantations, and the water surfaces (Figure 3). These classes 
are coded from 1 to 8. 

 

Figure 3. Zoom and color of the land use classes identified from Landsat OLI_TIRS 2018 image. 

3.2.3. Image Classification 

i. Choice of the classification algorithm 
Unsupervised method classification algorithms have been 

widely discussed in recent research [30, 31, 38]. These 
studies show that there are several algorithms. Among these 
algorithms, ISODATA [39] and K-means [40] are most 
commonly used. The results they provide are almost similar 
[30]. They are often equated with the supervised method in 
the sense that the number of classes must be given to 
initialize the process, but not necessarily their parameters 

[31]. However, we have favored the K-means algorithm 
because it has the advantage of assigning pixels, the closest 
class [41]. 

ii. First unsupervised classification over fifteen classes 
and interpretation of radiometric curves 

For better class separation, we launched the first 
classification of fifteen classes using all multispectral bands 
ranging from blue to infrared [25, 33]. The result obtained 
from the 2018 OLI_TIRS image is shown in figures 4 and 5. 

 

Figure 4. Unsupervised classification into 15 classes of the 2018 Landsat OLI_TIRS image. 
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Figure 5. Histograms of the spectral signatures of the unsupervised classification of the 2018 Landsat OLI_TIRS image. 

For the interpretation of classes histograms, particularly of 
plant formations, a detailed literature review was conducted 
[25, 28, 32, 33, 42-49]. The results show that natural surfaces 
are characterized by very large variations in reflectance 
according to the wavelength. And that, the spectral response 
of vegetation depends, among other things, on the 
pigmentation, physiological structure, and water content of 
the plant [45]. The pigments in the leaves of the plants absorb 
the light of the visible; whereas a dense structure of plants 
strongly reflects infrared light. This is why vegetation during 
chlorophyllian activity reflects strongly in the near infrared 
[28]. In addition, the denser it is, the stronger its reflectance 
in the green and near infrared. However, its reflectance 
remains low in blue and red. When it experiences stress, its 
chlorophyll content decreases, resulting in an increase in its 
visible reflectance with values close to those of infrared [50]. 

In the infrared medium, i.e. above 1.4 µm, the spectral 
behavior of plants is dependent on their water content [32]. 
In fact, a healthy vegetal cover has a significant decrease in 
reflectance around 1.45 µm and 1.9 µm. The higher the water 
content of the ground cover, the lower the reflectance [33]. 

Soils have a strong reflectance of visible to infrared [44]. 
According to the same source, in the visible, particularly in 
the red, which corresponds to the 0.63-0.69 µm range, its 
reflectance values are usually higher than those of the 
vegetation. In the near infrared, however, they are commonly 
lower [43]. As for water, it has a strong reflectance in the 
wavelengths of the visible, particularly in blue, and a nearly 
zero reflectance in infrared. 

On the basis of these interpretive keys, we have noted 6 
trends from the 2018 Landsat OLI_TIRS image classification 
(Figure 6). 
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Figure 6. Spectral profiles of class groups. 

 

Figure 7. Grouping of unsupervised classification into thematic classes on 15 classes of the 2018 Landsat OLI_TIRS image. 

Curves 7 and 14 have high absorption in red (B4) and in 
infrared (B7), and high reflectance in near infrared (B5), 
especially curve 14. Their fall from PIR to MIR is linear. 
They look like a healthy vegetation similar to a woodland. 
The main difference between these curves and those 4, 6, and 
10 is the level of reflectance in the PIR, which happens to be 
lower. In addition, from PIR to MIR (B6), the latter are 
constant; with however a downward trend. They look like 

healthy vegetation this time, which is similar to the savanna, 
especially the wooded savanna. 

Curves 8, 11, and 12 have a relatively low absorption in 
the red. In the PIR, their reflectance is strong; and very little 
more than those comparable to the wooded savanna. 
However, in the MIR (B6 and B7) their reflectance is even 
higher than that of other vegetation curves. This low 
absorption in the MIR (B7) is due to their low water content. 



 American Journal of Remote Sensing 2020; 8(2): 35-49 41 
 

Their appearance is that of the vegetation, but less healthy, 
similar to the wooded and shrub savanna. 

Curves 2, 3, 5, 9, and 15 have a strong reflectance of green 
to infrared. They look like floors. These are areas of 
cultivation and soil. Curve 13 has a strong reflectance in the 
wavelengths of the visible, and a near-zero reflectance in the 
infrared, which suggests water. However, its reflectance in 
the PIR indicates the presence of plant pixels within it. Curve 
1 has low reflectance in the green and red, and less 
reflectance in the PIR and MIR (B7). However, in the MIR 
(B6), its reflectance is relatively important. It clearly 
corresponds to the burns. 

This interpretation of the curves allowed the different 

classes to be grouped with are similar spectral signatures and 
according to the chosen nomenclature (Figure 7). It should be 
noted that of the eight classes identified by visual 
interpretation, only two classes could not be separated from 
this first classification. These are the gallery forest and the 
plantations. 

Thus, to move towards a precise and detailed mapping of 
land use, these classes have been corrected in several stages. 

iii. checks and corrections 
The verification and correction of classes required the 

development of thematic masks (Figure 8). Subsequently, we 
performed a classification in several steps on each mask. 

 

Figure 8. Mask of thematic classes from the collection of the Landsat OLI_TIRS 2018 image classification. 

The goal is to check for groups of pixels that do not match 
the mask and then reassign them to the correct class. This 
operation took place as follows: classification on 10 classes 
using the mask, interpretation of the spectral signatures of the 

resulting classes, grouping of classes according to their similar 
signatures and the chosen nomenclature (Figures 9 to 14). The 
curves were interpreted according to the same criteria. 

 

Figure 9. Histograms of the spectral signatures of the classification on the woodland mask. 
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a. Checking the woodland mask 
There are obviously four curves that differ from the 

others; and don't actually match the woodland class 
(Figure 9). These are curves 3, 4, 9 and 10. In the PIR, 
curve 3 has a very strong reflectance. Moreover, its fall is 
very significant in the MIR (B6). It resembles the curve 
of plantations formed mainly in the study area by 
orchards of “Anacardium occidentale L.” and banana 
plantations. For curves 4 and 10, they increased slightly 
from the PIR before falling in the MIR (B6). Their peak 
in this part of the spectrum is outgoing. In addition, in 
the PIR, their reflectance is less important than that of 
the other curves. They are similar to the curves of the 
wooded savanna. Curve 9 is characterized by a high 
reflectance in the PIR with a value that does not reach 
that of curves similar to the woodland. Its reflectance in 
MIR is still very low due to its high water content. This 
is obviously the gallery forest. Checking the wooded 
savanna mask. 

Three curves really stand out from the other curves of the 
classification on the wooded savanna mask (Figure 10). 
These are curves 4, 6 and 7. The main difference for curves 4 
and 6 is the MIR (B6); where they are increasing before 
falling in the MIR (B7). In addition, for curve 4, a low 
reflectance is noted in the PIR. It is similar to the curve of 
burns. On the other hand, curve 6 is similar to the wooded to 
shrub savanna. As for curve 7, its very strong reflectance in 
the PIR, and the pace of its fall from the MIR (B6) with an 
incoming peak, suggests plantations. 

 

Figure 10. Histograms of the spectral signatures of the classification on the 

wooded savanna mask. 

b. Checking the wooded to shrub savanna mask 
There are three different profiles here (Figure 11). First, 

profile 9 has high absorption in the red, high reflectance in 
PIR, and lower reflectance in MIR. This curve is similar to 
that of the wooded savanna. Then there are curves 1 and 10 
which are distinguished by a low absorption in the red and a 
higher reflectance in the MIR. This suggests the cultivations 
areas and soils. 

 

Figure 11. Histograms of the spectral signatures of the classification on the 

wooded to shrub savanna mask. 

c. Checking for burn mask 
Radiometric curves of the classification on the burn mask 

indicate that five curves have a different behavior (Figure 12). 
These are curves 1, 4 and 5 which look like cultivations areas 
and soils; and those 7 and 9 that look like the wooded to 
shrub savanna. 

 

Figure 12. Histograms of the spectral signatures of the classification on the 

burn mask. 

d. Checking the agricultural and soil surfaces mask 
The classification on the mask of cultivations areas and 

soils indicates that all curves correspond to this class (Figure 
13). 

 

Figure 13. Histograms of the spectral signatures of the classification on the 

mask "cultivations areas and soils". 
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e. Checking water mask 
The classification on the water mask shows a clear 

difference between curves 1, 3, 5 and 10 on the one hand; 2, 
4, 6, 7, and 8 on the other hand, and curve 9 (Figure 14). The 
interpretation of these different paces being made upstream 
indicates that the first series corresponds to water; while the 
second is similar to the gallery forest. Curve 9 has the 
appearance of burns. 

3.2.4. Confronting Land Data, Ancient Works and Map 

Validation 

Validation of results is important in the mapping process. It 
ensures the performance of the results obtained and the 
significance of the analyzes succeeding them [31]. For this, 
we used the field truths for the most recent year (Figure 15) 
and by interpolation for the year 1987. 

We also used other sources of additional information. For 
the most recent year, this is the map of the large plant 
population areas produced at the scale of 1/50,000 [51]. For 

the 1987 situation, we used the vegetation map of Senegal at 
1/500,000 [2]. We also used the 1/50,000 land cover changes 
cards from Senegal in 1975 and 2013 [7] and the Standard 
Vegetation Index (Figure 16) from the formula 
(PIR-R)/(PIR+R) [52]. 

 

Figure 14. Histograms of the spectral signatures of the classification on the 

water mask. 

 

Figure 15. State of land use in 1987 and 2018. 
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Figure 16. NDVI in 1987 and 2018. 

3.2.5. Mapping of Land Use Changes 

For the study of changes, we grouped the woodland and 
the gallery forest to form forest surfaces; and the wooded 
savanna plus the shrub tree to represent the wooded surfaces. 
Thereafter, classes were recoded from 1 to 6. Then, we added 
the two images using the "Intersect" algorithm of the 
"Geoprocessing" extension of Arc GIS 10.5 software. The 
result of the addition and the statistical treatment show three 
changes: regressions, which correspond to the decrease of 
one class in favor of other (negative change); progression 
that corresponds to the increase of one class at the expense of 
other (positive change); stability, when a class does not 
change during the study period. 

4. Results 

4.1. Spectral Profiles of Plant Formations in the Study Area 

Multistage unsupervised classification allowed to 
contribute to the knowledge of the spectral profiles of land-use 
classes, particularly plant formations, in the different channels 
used (Figure 17). 

In general, we can note that compared to savannas, forests are 
characterized by high absorption in the red, higher reflectance 
in near infrared, and lower reflectance in the medium infrared. 
In the near infrared, the denser the vegetation, the higher the 
reflectance values. Thus, the woodland is distinguished from 
the gallery forest by its peak which is more important in the PIR. 
However, in the MIR, its reflectance is higher than that of the 
gallery forest due to its high water content. As for the wooded 
savanna, it stands out from the wooded to shrub savanna 
because of its reflectance in the near infrared, which is more 
important. However, in the MIR 2, its reflectance is lower than 
that of the wooded to shrub savanna. 

 

Figure 17. Spectral Profile of Land Use Classes in 2018. 

Burned surfaces generally have low reflectance in the green, 
red, near infrared and far infrared (MIR 2). In the MIR 1, they 
have a strong reflectance. Crop areas and soils have a very 
strong reflectance in the visible and infrared. The plantations 
consisting mainly of anacard orchards and banana plantations 
in our study area have a low reflectance in the green and red. 
In PIR, they have a very strong reflectance. In the MIR 2, their 

reflectance is even lower than that of other vegetation classes 
except the gallery forest. Water is characterized by high 
reflectance in blue and low reflectance from green to infrared. 

Of course, it should be noted that the luminance values vary 
according to the dates of shooting (year and month), the nature 
of the ground, its intensity, and its water content; hence, it is 
not possible to characterize afforestation by a standard 
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spectral signature without taking into account the season [53]. 

4.2. Changes in Land Use in 1987 and 2018 

The evolution of land use highlights an overall decrease in 
the woodland and an increase in the areas of savanna and 
cultivation and soil (Table 2). In 1987, forest areas occupied 
607,844.4 ha, or 44.1% of which 40.5% is occupied by 
woodland, and 3.6% by gallery forest. Savannas occupied 

433,509.7 ha, or 31.5% of the land occupancy. They are 
dominated by the wooded savanna which occupies 339,747.7 
ha, or 245,985.7 ha more than the wooded to shrub savanna. 
The surfaces that had been affected by the fires at that date 
capture covered 52,106.1 ha, or 3.8%. Cultivations areas and 
soils covered 280,490.4 ha, or 20.4%. Plants and water 
surfaces were 204.8 ha and 3,144.5 ha, respectively. 

Table 2. Area in hectares and percentage of land use in 1987 and 2018. 

Class 
1987 2018 

Balance in ha 
Ha % Ha % 

Woodland 557 909,2 40,5 178 272,1 12,9 -379 637,1 
Gallery forest 49 935,2 3,6 52 453,6 3,8 2 518,4 
Wooded savanna 339 747,7 24,7 498 153,8 36,2 158 406,1 
Wooded to shrub savanna 93 762 6,8 198 528,3 14,4 104 766,8 
Burned surfaces 52 106,1 3,8 6 296,4 0,5 -45 809,7 
Cultivation and soil areas 280 285,6 20,4 436 361,1 31,7 156 075,5 
Plantations 204,8 0,0 2 467,8 0,2 2 263 
Water 3 144,6 0,2 4 562,1 0,3 1 417,5 
Total 1 377 095,2 100 1 377 095,2 100 0 

 
In 2018, the land occupancy is dominated by the wooded 

savanna and the cultivation and soil areas. Savannas increased 
by 263,172.9 ha compared to 1987; and the growing and soil 
areas of 156,075.5 ha. The wooded savanna, with an area of 
498,153.8 ha or 36.2%, increased by 158,406.1 ha. The 
wooded to shrub savanna increased by 104,766.8 ha. 

Plantations and water surfaces have also increased. The 
increase in water surfaces was accompanied by the increase in 
the gallery forest of 2,518.4 ha. The woodland, with an area of 
178,272.1 ha or 12.9% of land cover, decreased by 379,637.1 
ha. The same is true of the surfaces affected by the burns. 

4.3. Changes in Cover Between 1987 and 2018 

 

Figure 18. Changes in plant cover between 1987 and 2018. 
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Mapping changes in vegetation cover indicates three major 
changes following a north-south gradient (Figure 18). Along 
the border with Gambia, large areas of forest and savanna 
have been transformed into agricultural and soil surfaces. The 
Pata listed forest is the most seriously affected by this change. 
This forest has been the subject of massive human occupation 
since the late 1970s by agropastering migrants who have come 
to search for new agricultural land following the degradation 
of the land of the peanut basin and the lands of East Senegal to 
the point of having modified the original structure of the 
ecosystem. In the center-east, conversions of the vegetation 
cover were made around the Anambé watershed located near 
the listed forest of the same name. 

In the center-west, we noticed a sharp decline in woodland 
surfaces in favor of the wooded savanna. It is the same in the 
southeast. In the southern part, we noticed three situations 
globally. This concerns the stability of forest surfaces, 
followed by an increase in savannas and agricultural and soil 
surfaces. However, reforestation was noted mainly in the east, 
in the Koulountou listed forest, and in the southwest. 

The change matrices show that forest surfaces remained 
stable at 169,699.1 ha, or 12.3%. The regression in favor of 
the savanna is 308,562.4 ha (22.4 per cent); and 125,564.1 ha, 
or 9.1% in favor of cultivation areas and soils (Table 3). In 
addition, a reforestation of 60,922.6 ha, of which 34,109 ha 
was recorded on savanna surfaces. 

The areas of savanna and cultivations areas and soils 
without change were 290,628.1 ha (21.1%) and 194,383 ha 
(14.1%), respectively. A conversion of 104,185.3 ha of 
savanna into agricultural areas and soils is noted. The areas 
affected by fire were predominantly savanna, i.e. 35,733.2 ha. 

Table 3. Balance in hectare and percentage of changes in cover 1987-2018. 

Changes Class Ha % 

No change 

Forest 169 699,1 12,3 
Savanna 290 628,1 21,1 
Burned surfaces 820,3 0,1 
Cultivation and soil areas 194 383 14,1 
Plantations 204,8 0,0 
Water 1 076,8 0,1 

Regression 

Forest to savanna 308 562,4 22,4 
Forest to cultivation and soil areas 125 564,1 9,1 
Savanna to cultivation and soil areas 104 185,3 7,6 
Burned surfaces to savanna 35 733,2 2,6 

Progression 

Savanna to forest 34 109 2,5 
Other forest surfaces 26 813,6 1,9 
Other savannas surfaces 61 650,6 4,5 
Burned surfaces 5 472,1 0,4 
Other cultivation and soil areas 12 125,6 0,9 
Plantations 2 455,6 0,2 
Water 3 611,7 0,3 

Total 
 

1 377 095,2 100 

5. Discussions 

The evolution of land use in Upper Casamance is marked by 
a sharp decline in the woodland in favor of savannas and 
cultivations areas and soils. Between 1987 and 2018, the 
woodland lost 379,637.1 ha of its area, or 27.6%; savannas 

that were both wooded and wooded to shrub increased by 
158,406.1 ha and 104,766.8 ha, respectively. Similarly, 
cultivations areas and soils increased by 156,075.5 ha. 

Thematically, this study is consistent with several work in 
Africa in general, and in Senegal in particular. Indeed, what is 
happening in Upper-Casamance is similar to what is 
happening in the Marahoué National Park in Côte d’Ivoire 
[22], in the Democratic Republic of Congo [21], in Gabon [54], 
in Gabon Benin's Sudano-Guinean zone [23], and in the 
Yangambi Biosphere Reserve [26]. In these areas, changes in 
vegetation cover and observed changes are mainly due to 
human pressure, both rural and urban, reflected in population 
growth and agricultural activities. 

In Senegal, [2] and [5] noted that agricultural land is 
gaining ground on wooded savannas and woodlands in the 
center and south of the country. Similarly, [25] also mentioned 
a significant degradation of plant cover in Lower and Middle 
Casamance. 

In our study area, the dynamics of agriculture are also at the 
heart of changes in vegetation cover and the anthropization of 
landscapes. It explains, through agricultural land clearing [10], 
the conversion of large forest and wooded areas along the 
border with Gambia and in the center of the study area. This 
situation arises as a result of the massive influx of agropastering 
migrants who have come in search of new farms and settled 
there [55]. They respond to the increase in the population, 
which in turn increases the demand for wood fuels and thus the 
abusive and illicit cutting of certain woody species for sale. In 
addition, wildfires are considered by many authors to be an 
important factor in the progression of savannas [56, 57] and 
degradation of vegetation [12]. They are one of the main causes 
of the relative slowness of forest growth in Senegal [58]. 

Methodologically, the use of multistage unsupervised 
classification proved to be effective. In their studies, [25, 33] 
have shown its effectiveness for a similar study applied to regions 
with similar physical characteristics to our. In contrast to their 
studies, our study sought also a better understanding of the 
spectral profiles of plant formation types encountered in the area 
and of radiometric values. These will allow, as noted [31], 
interpretation using similarity measurements when radiometric 
values of the class types present in the study area are available. 
The classification process will be directed from known spectral 
and temporal radiometric data obtained over different years or 
areas, rather than interpreting an unsupervised classification. 
According to him, this process is particularly suited to the 
treatment of large study areas offered by Landsat data. 

6. Conclusion 

Using the multistage unsupervised classification method, 
this study made it possible to map and quantify changes in 
land use and vegetation cover in Upper Casamance. On a 
thematic level, the results indicated that between 1987 and 
2018, forest areas decreased by 377,118.7 ha (27.4%), while 
wooded areas and cultivations areas and soil increased by 
263,172.4 ha (19.1%) and 156,075.5 ha (11.3%) respectively. 
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In terms of changes, three major changes are noted in a 
north-south gradient. These include deforestation by 
increasing agricultural and soil surfaces along the border with 
the Gambia, savanization and anthropization in along the 
central part, and stability of forest surfaces to savanization and 
anthropization in the south. However, reforestation has been 
noted in some places. 

Methodologically, mapping being based on spatial and 
temporal variations in spectral signatures of land-use units, 
particularly of plants, has made it possible to contribute to the 
knowledge of spectral profiles of land-use classes, particularly 
of plant formations. It is important for future studies relating 
to areas with geographic and climatic characteristics similar to 
Upper Casamance. 
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