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Abstract: Recent evolutions of the geospatial technologies are more accurate in mapping and monitoring land use land 

cover, LULC, in different environments and at different spatial scales. However, some urban applications keep facing issues 

such as misclassification and other noise in unplanned cities with disorganized built-up and mixed housing material, and 

surrounded by a composed biophysical environment. This paper reports the processing leading to a new spectral index, that 

balances the land surface brightness temperature and spectral reflectance to accurately extract the built-up. The namely 

Brightness Adjusted Built-up Index, BABI, is proposed as a weighted ratio of Landsat OLI-TIRS bands. The methodology is 

based on a multi-perceptron layers, MLP, regression between a classified image and individually classified red, SWIR1, 

SWIR2 and TIR bands reclassified “1 = built-up; 0 = Non-Built-up”, with an average r
2
=0.78. The same way, a linear 

regression of popular built-up spectral indices such as Normalized Difference Built-up Index, NDBI, and Urban Index, UI, or 

recently proposed Modified New Built-up Index, MNBI, and Normalized Difference Built-up and Surroundings Unmixing 

Index, NDBSUI, on one hand, by light-dark spectral indices such as, Normalized Difference Soil Index, NDSI, Bare Soil 

Index, BSI, and Shadow index on the other hand, stands for the natural environment noise assessment in and around the 

built-up, with an r
2
=0.75. The MLP r

2
 standing for the built-up information, is rounded to 0.8 and according to their rank in the 

process, the weights allotted are 0.2, 0.4 and 0.8 in the numerator, and inversely 0.8, 0.6 and 0.2 in the denominator, to the red, 

SWIR1 and SWIR2 bands respectively. Whereas, the simple linear regression r
2
 standing for the noise is used to weigh the 

brightness temperature, TB in the numerator and subtracted from the previous group. The value 0.001 multiplies the whole 

ratio to lower the decimals of the outputs for an easy interpretation. As results, on the floating images scaled [0-1], built-up 

values are ≥0.1 in Yaoundé (Cameroon) and ≥0.07 in Bangui (Central African Republic). The overall accuracies are 96% in 

Yaoundé and 98.5% in Bangui, with corresponding kappa coefficients of 0.94 and 0.97. These scores are better than those of 

the NDBI, UI, MNBI and NDBSUI. 
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1. Introduction 

1.1. Background, Problem Statement and Study Area 

Nowadays, the satellite imagery is a powerful and reliable 

tool to assess the global urban footprint [1]. One set of useful 

techniques include the image classification according to 

different algorithms [2-5]. These methods consider the shape, 

the size, the context as well as the spectral content, and are 

consequently important when the satellite image used has a 

very high resolution (VHR) [5]. Besides, the use of spectral 

indices has also been successful in mapping the built-up and 

urban impervious area with high accuracies. Pillar ones are the 

urban index, UI, [6] and the normalized difference built-up 

index, NDBI [7], that respectively enable the residential areas 

and the human settlements automatic mapping using simple 

ratios between two spectral channels. They were followed by 

several other spectral indices giving similar or higher 

accuracies depending on the test area [8-19]. 

However, these applications are enough challenging in the 

rapid and unplanned urbanization context of many developing 

countries. Amongst several reasons, one can mention the 

extent of slums built with recovery materials (plastics, sheet 

metal, etc.) inside cities and along asphalted or dusty roads, as 

well as suburbanization that blurs the limits of modern 

built-up and craft made housing. It has been noticed that the 

pixel combinations in areas with heterogenic objects [13, 22, 

23] causes high rate of uncertainties and biases [9, 23-25]. 

Moreover, spectral signatures of impervious surface areas are 

similar to those of dry soils [10, 11], whereas detecting surface 

water is a challenge in regard of its confusion with buildings’ 

shadowing [24]. 

For illustration, some of these applications were tested in 

sub-Saharan Africa, specifically the urbanized areas of 

Yaoundé (Cameroon) and Bangui (Central African Republic) 

(Figure 1). These cities have a common urban mixed structure, 

i.e., planned and unplanned build area. Their natural 

surroundings also have some similarities such as internal 

forest, gardens, savannahs or shrubs for vegetation, lakes, 

streams, or swamps for water bodies, rocky, dusty or sandy 

bare soils, and rough or mountainous terrain, which are 

spectrally noisy for the built-up extraction (Figure 2). On the 

Landsat 8 subsets extracted for the study, vegetation and 

built-up are dominant in Yaoundé, while bare soils, rough 

terrain and water bodies are added to the two previous land 

cover classes in Bangui (Figures 1&3). 

 
Figure 1. The study location. Cameroon and Central African Republic (A&B); subset of Yaoundé and surroundings (C); subset of Bangui and surroundings (D). 



 American Journal of Remote Sensing 2021; 9(1): 1-15 3 

 

 

Figure 2. Partial cityscape view of Yaoundé (A) and Bangui (B). The mixing of modern new and old buildings, the nearness of rusty rooftops (red arrow) and 

unpaved dusty/muddy roads/spaces (green arrow), and the rough terrain (yellow arrow) are some sources of satellite image misclassification. [Source: Yaoundé 

(dreamstime.com) and Bangui (sangonet.com)]. 

On one hand, the combination of these conditions at 

different levels usually impact the discrimination of built-up 

from the other land cover features as noticed on the patterns of 

the NDBI [7] and the Normalized Difference Impervious 

Surface Index, NDISI [10] (Figure 3). Thus, although their 

original goals are the urban built-up mapping, the NDISI 

inverts the visual patterns of NDBI by highlighting dark 

impervious surfaces and water bodies. 

On the other hand, the high values of land surface 

temperature, LST, are a mix of built-up and bare soils trends in 

the two sites. For the case of Bangui, several built-up hot spots 

even record medium to low LST values (Figure 3).

 
Figure 3. Some popular built-up and urban spectral indices and methods tested in Yaoundé and Bangui. 

Fundamentally, the land surface temperature, LST, enables 

the mapping of urban heat islands (UHIs) [20, 21]. However, it 

is highly influenced in its interactions with the climate, by the 

land features distribution [25-29]. Figure 4 supports this 

statement by showing a high positive correlation of LST with 

both built-up and soil features, detected through spectral 

indices (Table 1). 
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Figure 4. Relation of LST with built-up and bare soil – Yaoundé (A1-C1) and Bangui (A2-C2). Bare soil index, BSI [30], and normalized difference soil index, 

NDSI [31]. 

Table 1. The indices used for mapping and linear regression. 

Index Feature targeted Expression based on Landsat OLI-TIRS sensors Reference 

UI Urban Settlements 
����2 � ���
����2 � ��� [6] 

NDBI Built-up 
����1 � ���
����1 � ��� [7] 

NDISI Impervious surfaces 

��
���������������

� �

������������������

� �, with ����� � ���� 
!"#$%
���� �!"#$% [10] 

BSI Forest areas bare soils 
&����2 � �'() � &��� � *+,')
&����2 � �'() � &��� � *+,') [30] 

NDSI Urban and Suburban soils 
����1 � -.''/
����1 � -.''/ [31] 

 

1.2. Previous Experimentations 

To address these issues, we recently experimented two new 

indices based on spectral bands arithmetic and they have been 

successfully applied in six different cities of Cameroon. The 

first one is the modified New Built-up Index, MNBI, to 

enhance the built-up extraction and analyse the spatiotemporal 

urban metabolism of Foumban (West-Cameroon) [32]. It uses 

the Landsat 8 images and enhances the NBI [8] results, by 

using the following algorithm: 

��*� � 0�*�1 � 2����21 [32] 

Where, �*� � 3$�4∗3!"#$%
36#$  [8] and 2 is the land surface 

reflectance of Landsat OLI-TIRS designated band. On the 

image of 2019 in Foumban, the MNBI was efficient in the 

built-up extraction with an overall accuracy (OA) of 95.3% 

and a kappa coefficient (KC) of 0.93. 

The recent proposal is the Normalized Difference Built-up 

and Surroundings Unmixing Index, NDBSUI, to automate the 

built-up extraction in five different biophysical environments 

[33]. Its detailed goal has been to extract the built-up features 

and interweave its spectral signal from surrounding noise. 

Therefore, still using the Landsat 8 image to, the algorithm 

was proposed as follows: 

��*�7� � 82����2�92�'(∗2����1:�&2�'(�2����1)
82����2�92�'(∗2����1:�&2�'(�2����1) [33] 

On Landsat 8 satellite images of 2019, the outcomes view 

was better and the overall accuracies higher than comparative 

indices, i.e., OA=95.5% (KC=0.90) in the main study area of 

Yaoundé (humid forest). In the validation sites, they were the 

following: Yokadouma (humid forest) OA=98.9% (KC=0.88); 

Kumba (humid Mountainous forest) OA=97.5% (KC=0.94); 

Foumban (highlands savannah) OA=97.06% (KC=0.92); 

Ngaoundéré (high guinea savannah) OA=95.3% (KC=0.89); 

Garoua (sudano-sahelian shrubs) OA=74.86% (KC=0.42). 
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As a continuum, this research focuses on reducing the noise 

created by the land surface brightness and shadowing, while 

mapping built-up. The goal is to improve the accuracy of 

built-up extraction, while inhibiting the reflectance of natural 

features (vegetation, bare soil, water body) as well as 

buildings shadows, dark paved (asphalts) or unpaved 

(dusty/muddy) roads. 

2. Materials and Methods 

2.1. Satellite Images Acquisition 

The satellite images of Landsat operational land imager and 

thermal infrared sensor, OLI-TIRS, were downloaded for the 

dry season (Table 2), from the website of United States 

Geological Survey (USGS). This phenological season is 

responsible of the highest level of soil bareness and rough 

terrain brightness/shadowiness around and in between the 

buildings, highlighting the issue of the land cover object 

confusions to be solved. Some visible and thermal infrared 

bands were used (Table 3). 

Table 2. Identification of the images used. 

Site Scene ID Month 

Yaoundé LC81850572020026LGN00 February 

Bangui LC81810572020014LGN00 January 

Both scenes were first pre-processed for atmospheric 

correction, conversion to radiance, and then to at-sensor 

reflectance for OLI bands using the LOW-COST model [37], 

and to brightness temperature for the thermal infrared band 10 

following the steps proposed by references [38, 39]. 

Table 3. Landsat OLI-TIRS characteristics. 

Resolution (m) Band name Wavelength (;<) 

30 

Coastal/Aerosol 0.435 – 0.451 

Blue 0.452 – 0.512 

Green 0.533 – 0.59 

Red 0.636 – 0.673 

NIR 0.851 – 0.879 

SWIR1 1.566 – 1.651 

SWIR2 2.107 – 2.294 

15 Panchromatic 0.503 – 0.676 

30 Cirrus 1.363 – 1.384 

100 
TIR-1 10.60 – 11.19 

TIR-2 11.50 – 12.51 

2.2. Spectral Measures 

Based on 100 to 200 pixels sampled 40 at least at a time, 

spectral signatures of built-up, vegetation, bare soil and water 

body have been plotted and assessed. As shown in figure 5, 

SWIR1 and SWIR2 bands give the highest reflectance for 

built-up that stands in this study for the bright impervious 

surfaces. However, vegetation, soil and water reflectance are 

closer to the built-up in the SWIR1 (Vegetation=[16-18]%; 

Soil =[17-18]% Water=[11-15]%; Built-up=[20-21]%), than 

they are in the SWIR2 (Vegetation=[10-12]%; Soil=[14-15]%; 

Water=[9-12]%; Built-up=[17-18]%) (Figure 5). The 

difference of reflectance between the built-up and other 

features is 6%, 3% and 6% for vegetation, soil and water in the 

SWIR2, versus 3%, 3% and 6% in the SWIR1 for the same 

order of appearance. The same way, the TIR band shows an 

increasing (in Yaoundé) or decreasing (in Bangui) trend of 

these features, emphasizing the questioning about its ability 

for built-up detection. 

 
Figure 5. Spectral reflectance of LULC in Yaoundé (A) and Bangui (B). 

As a reminder, reference [40] experienced that Landsat 8 

images in-band and out-of-band measured spectral response 

for vegetation and soil, shows a lack of spectral uniformity 

between the radiance of the red, SWIR1 and SWIR2 bands. 

Indeed, the maximum and average radiance of soil is uniform, 

constant and continued in the red and SWIR1 bands, while it 

records the highest discontinuity in the SWIR2, then 

explaining the difference of reflectance previously mentioned. 

In addition, recent studies noticed that the thermal infrared 

data is able to support the processing separating water bodies 

from impervious surfaces, yielding an identifiable temperature 

difference between them [41]. Whereas it was pointed out that 

bare soil has spectral response patterns highly similar to 

high-albedo (HA) impervious surfaces that is obtain by using 

TIR band [42, 43]. 
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2.3. Built-up Information in Spectral Bands and the First 

Experimental Assumption 

Two complementary regressions are performed to predict 

the informational rate of built-up features. The first one uses 

the Multi-Layer Perceptron, MLP. It is a class of feed forward 

artificial neural network, ANN, that is known as a connected 

network of processing units that are modelled on the most 

basic properties of the neurons in the human brain and has 

been satisfactorily used in several fields of research including 

remote sensing [44, 45]. MLP utilizes a supervised learning 

technique called backpropagation for training [46]. Its 

multiple layers and non-linear activation distinguish MLP 

from a linear perceptron. In addition, it performs a 

non-parametric regression analysis between input variables 

and one dependent variable with the output containing one 

output neuron, i.e., the predicted memberships. For this later 

method, the values of the output predicted image is the 

activation level of the output layer node scaled to the original 

data range, which is expressed as follows: 

=> � ?&/'@>), with, /'@> � ∑ 	CD>=D D
%  

Where ? symbolizes the activation function, C and = are 

the weights and the biases. 

Using the K-means processing, an unsupervised 

classification was performed for the stacked image and for the 

individual bands red, SWIR1, SWIR2 and TIR. The results 

were converted in 2bits (binary), with 1 for the built-up and 0 

for the other classes. Then, a MLP network (Figure 6) logistic 

sigmoidal regression was implemented, inputting the 

classified individual bands as independent variables and the 

classified stacked image as dependent variable. Using an 

automatic training process, a total of 1000 pixels were defined 

for the learning, i.e., 500 for training and 500 for the testing, 

for a processing cycle of 1000 iterations (Figure 7). In 

Yaoundé, the 	.1 of the model is 0.84 versus 0.73 for Bangui 

(Table 4). When assessing the sensitivity of the model, the 

constancy of the 	.1  identifies the red band as ‵least 

influential′ with 0.84, and the SWIR2 as ‵most influential′ 

with 0.48 in Yaoundé, and in the same order, the values 

recorded in Bangui are 0.72 and 0.012 (Figure 7&Table 5). 

The second set of regressions are the simple linear ones. 

Their trends confirm the presence of built-up features in each 

classified band, with the highest 	.1 for the SWIR2, i.e., 0.84 

in Yaoundé and 0.8 in Bangui, and the lowest ones for the TIR, 

i.e., respectively 0.75 and 0.47 in the same order. (Figure 8). 

 

Figure 6. Architecture of the MLP regression used. 

 

Figure 7. Sensitivity analysis of the model, based on 1000 iterations duration. 
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Table 4. Parameters and performance of the MLP regression. 

Yaoundé Bangui 

Application type Regression Application type Regression 

Input layer neurons 4 Input layer neurons 4 

Hidden layers 2 Hidden layers 2 

Hidden layer 1 neurons 6 Hidden layer 1 neurons 6 

Hidden layer 2 neurons 3 Hidden layer 2 neurons 3 

Output layer neurons 1 Output layer neurons 1 

Maximum requested samples 1000 Maximum requested samples 1000 

Final learning rate 0.0100 Final learning rate 0.0100 

Momentum factor 0.5 Momentum factor 0.5 

Sigmoid constant 1 Sigmoid constant 1 

Acceptable RMS 0.01 Acceptable RMS 0.01 

Iterations 1000 Iterations 1000 

Training RMS 0.2278 Training RMS 0.2068 

Testing RMS 0.1907 Testing RMS 0.1799 

R square 0.8372 R square 0.7267 

Table 5. Sensitivity of the model to forcing a single independent variable to be constant (i) and all independent variables except one to be constant (ii). 

Model 
Yaoundé Bangui 

r2 (i) r2 (ii) Order r2 (i) r2 (ii) Order 

With all variables 0.8372 0.8372 N/A 0.7267 0.7267 N/A 

Var. 1 constant (Red) 0.8376 0.0000 4 0.7251 0.0881 4 

Var. 2 constant (SWIR1) 0.5404 0.0000 2 0.7262 0.0000 2 

Var. 3 constant (SWIR2) 0.4871 0.0743 1 0.0117 0.7247 1 

Var. 4 constant (TIR) 0.7199 0.0000 3 0.7269 0.0000 3 

 
Figure 8. Relation between the built-up classes detected on classified stacked images and individual bands. 

From the observations above, the first assumption is stated 

as follows: i) ratio of the predicted built-up information over 

the predicted noise might be able to extract at best the built-up 

features. The 	.1  values resulting from the MLP model 

regression and the ordering of the variables resulting from the 

analysis of the sensitivity model are favourable to the 

respective decreasing weighing SWIR2, SWIR1, TIR and Red 

to influence the built-up extraction. 

Then remains to determine the type and predict the level of 

noise, as well as its influence in the discrimination of built-up 

features. This infers their spectral and statistical relations. 

2.4. Noise Prediction and the Second Experimental 

Assumption 

Noise can be categorized as brighter and darker bodies, in 

and around the built-up. To assess its influence, the most 

accurate bare soil index, BSI [30] for Bangui and NDSI [31] 

for Yaoundé, and the shadow index [36] are each regressed by 

four urban/built-up, spectral indices, i.e., UI [6], NDBI [7], 
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MNBI [32] and NDBSUI [33]. These regressions are positive 

with the BSI/NDSI and negative with the shadow index. The 

average correlation coefficient 	.1  are 0.74 for both bright 

and dark noise on the two study sites (Table 6). It can be 

noticed that in Yaoundé, the bright noise (NDSI) is more 

effective with 	.1 of 0.8 versus -0.68 for the dark noise (SI). 

While in Bangui, these 	.1  record a slight difference, with 

respectively 0.75 (BSI) and -0.73 (SI). 

For further confirmation, the BSI [30], NDSI [31] and the 

shadow index [36] are also regressed by the brightness 

temperature, TB, extracted from the thermal infrared band 10 

(Read about detailed processing in references [20, 21]). The 

correlation coefficients 	.1 are 0.51 (NDSI) and -0.32 (SI) in 

Yaoundé, for -0.95 (BSI) and 0.23 (SI) in Bangui (Table 6). 

The second assumption at this point is the following: ii) the 

average .1  values resulting from the linear regression 

between NDSI/BSI and SI can be used to weigh TB, and then 

subtracted from the sum of weighted red, SWIR1 and SWIR2 

bands. This should result in isolating surrounding noise, 

whilst enhancing the built-up detection and discrimination. 

Table 6. R square values predicting the rate of noise. 

 
Yaoundé Bangui 

Bright noise (NDSI) Dark noise (SI) |Average| Bright noise (BSI) Dark noise (SI) |Average| 

NDBI 0.96 - 0.85 0.9 0.77 - 0.84 0.8 

UI 0.88 - 0.82 0.85 0.81 - 0.74 0.77 

MNBI 0.88 - 0.64 0.76 0.72 - 0.75 0.73 

NDBSUI 0.48 - 0.41 0.44 0.71 - 0.6 0.65 

|Average| 0.8 0.68 0.74 0.75 0.73 0.74 

TB 0.51 - 0.32  - 0.95 0.23  

2.5. Summative Processing-the Brightness Adjusted 

Built-up Index, BABI 

The outflow of preparatory processing above is an 

algorithm expressed as a ratio. The weights are affected 

differently at the numerator and the denominator. The average 	.1 of the two sites resulting from the MLP model, i.e., 0.78 

rounded to 0.8, is used to deduct a weight (w) for each visible 

band, exempting the TIR that is assumed still noisy. Therefore, 

to fill the gap in ranks and values caused by the previous 

assumption, for the numerator, the average 	.1 is divided by 4 

for red band (‵least influential variable′; w=0.18≈0.2), by 2 

for the SWIR1 (w=0.39≈0.4), and by 1 for the SWIR2 

(‵most influential variable′; w=0.78≈0.8). These weights are 

the estimated quantity of built-up information in the 

considered band. 

The inverse and compensatory weights are used in the 

denominator, such as 0.8, 0.6 and 0.2 for red, SWIR1 and 

SWIR2 bands respectively. These weighs stand for the 

quantity of noise in each band. 

Concerning the TB, its weights were given such as 

0.74≈0.75 in the numerator and 1 in the denominator. The first 

weight is the predicted noise and the second weight stands for 

the entire information in the TB. 

In this form, the difference of weights between numerator 

and denominator as well as the usual high values of the TB will 

induce high number of decimals that will be at the nearest 

thousandth. Therefore, an E value, 0.001, is introduced as a 

factor of the whole above operations to ease the results’ 

interpretation. 

From the above process, the Brightness Adjusted Built-up 

Index, BABI, is generated as a weighted ratio in the following 

formula: 

*F*� � G&H&0.2 ∗ 2�'() + (0.4 ∗ 2����1) + (0.8 ∗ 2����2)] − [0.75 ∗ PQ][(0.8 ∗ 2�'() + (0.6 ∗ 2����1) + (0.2 ∗ 2����2)] + PQ ) ∗ 0.001S 

3. Results 

3.1. Built-up Extraction Efficiency 

Figure 9 shows the maps of built-up extraction by the 

proposed method and following the first goal of this study. 

The BABI is stretched [0.047–1.452] in Yaoundé, with the 

main information concentrated between [0.05–0.4], versus 

[0.014–0.76] and [0.015–0.18] for the same purposes in 

Bangui. The built-up extraction is more efficient when 

compared to the classification map (Figure 9). 

For a background analysis, the Jenks natural breaks were 

used as automatic classifier. This method helps to reduce 

variance within groups and maximize variance between 

groups. Four natural breaks were applied on the raw floating 

results (Figure 10), and the thresholds for built-up features are ≥ 0.18 for Yaoundé and ≥ 0.074 for Bangui. Similar steps 

were used after the images were rescaled [0-1], thresholding 

the built-up extraction at ≥ 0.1 in Yaoundé and ≥ 0.075 in 

Bangui (Figures 9 &10). This distribution of values reduces 

the built-up features generalization with satisfactory visual 

appraisal when compared with classification and other 

spectral indices (Figure 9). 

One important point is about the compensatory effects 

between sub-information and over-information. For instance, 

when using the class separability matrix detailed in table 7, the 

classification in both sites presents confusion between bare 

soils and built-up classes. Thus, the values of the separability 

between the built-up and the bare soils are not only the lowest, 

i.e., 47.9 in Yaoundé and 41.8 in Bangui, but they are also way 

below the best average separability, respectively sets at 60.8 

and 57.9. Visually, while the classification of Yaoundé is 

over-informative in and around the built-up, the one of Bangui 

presents a low built-up detection compared to the RGB image 

and the BABI. Overall, on the two sites, the NDBSUI, MNBI, 

NDBI and UI are over-informative compared to the BABI 
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(Figure 9).

 
Figure 9. Comparative patterns of BABI. The raw classification (1) and the BABI stretched [0-1] (2) show the same trends for built-up. Their binary versions, i.e., 

classification (3) and thresholds of BABI (4) show the built-up footprints. On urban zooms (red square, rows 2 and 4), the BABI is efficient than compared 

spectral indices in reducing both high and low reflectance noise. 

Table 7. Spectral signatures/classes separability. 

Signatures 
Yaoundé Bangui 

Built-up Vegetation Bare soil Water Body Built-up Vegetation Bare soil Water Body 

Built-up 0 71.7031 47.9331 101.971 0 57.7493 41.8391 97.7805 

Vegetation 71.7031 0 32.5667 54.4132 57.7493 0 32.4568 60.6467 

Bare soil 47.9331 32.5667 0 56.6885 41.8391 32.4568 0 57.0011 

Water Body 101.971 54.4132 56.6885 0 97.7805  57.0011 0 

Best Average Separability: 60.8792 Best Average Separability: 57.9123 
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Figure 10. Snapshots of Jenks natural breaks classes (blue) in Yaoundé (A) and Bangui (B). 

Further, the accuracy assessment was conducted between 

the unsupervised classification of all the indices compared 

with RGB classification image used as reference. The random 

sampling method proposed by [34] was used with 200 

locations. The BABI is validated in Yaoundé with an overall 

accuracy (OA) of 96% and a kappa coefficient (KC) of 0.94, 

and in Bangui with respectively 98.5% and 0.97 (Table 8). On 

the two sites, the built-up class is spotted with 100% of OA 

and 1 of KC, and few water pixels were affected to vegetation 

class. These scores decrease in the order NDBSUI, MNBI, 

NDBI and UI in the two cities, due to the generalized built-up 

detection and the others classes confusion. 

Table 8. Compared accuracy assessment. 

 
Yaoundé Bangui 

PA (%) UA (%) OA (%) KC PA (%) UA (%) OA (%) KC 

BABI 95.16 93.8 96 0.94 99.15 95.58 98.5 0.97 

NDBSUI 92.59 93.75 93.25 0.9 91.54 87.07 89.18 0.85 

MNBI 88.95 87.7 88.46 0.84 92.1 85.4 87 0.82 

NDBI 79.18 82.86 87 0.78 89.63 86.95 86 0.81 

UI 82.48 81.9 81.3 0.75 88.9 83.01 85.42 0.8 

 

3.2. Biophysical Noise Reduction Ability 

According to the second specific goal, the BABI has been 

able to reduce surroundings brightness and shadowing. The 

histograms automatically produced for the maps floated [0-1] 

are monomodal for the BABI, i.e., only one population, 

assumed to be built-up, is highlighted. The same histograms 

are bimodal at different degrees for the compared indices, 

inferring the presence of information other than built-up 

(Figure 11). In fact, the distribution of the pixels is 

mathematically assumed to be normal (Gaussian) and 

continuous [35]. A full one-peak bell-shaped curve identical to 

the observation densities (Figure 12), i.e., symmetrical, is 

considered satisfactory for regrouping similar pixels. 

Based on a subset of 50,000 pixels described in ten classes, 

densities are concentrated between the first five classes, the 

standard error �U � 0 , V W 0.0001  and X � 0.05 . The 

density distribution describes a full bell-shaped curve slightly 

right-skewed (positive skewness), with Y � 0.268  and 

Z � 0.065  in Yaoundé, for Y � 0.283  and Z � 0.04  in 

Bangui. The histogram limits the highest peaks in the tight 

bounds [0.2-0.4], which confirms the lower stretching of the 

image. This distribution fitting explains the noise reducing, a 

low confusion between LULC classes and consequently the 

neat separation of the built-up from surrounding features as 

pointed out by the accuracy assessment. Comparatively as 

shown in figure 13, the MNBI and NDBSUI trends are less 

stretched as for the BABI, their densities are concentrated with 

bell-shaped curves and their parameters (Y and Z) are low. 

While the densities of the UI and NDBI are widely stretched, 

with bell-shaped curves evolve around two to four distribution 

peaks, and their parameters are higher than BABI ones. These 

statements support higher trends of classes confusion in other 

indices, although the MNBI and NDBSUI results are close to 

the BABI one. 
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Figure 11. Automatic density and frequency distribution in Yaoundé (A) and Bangui (B). 

 
Figure 12. 50,000 sampled pixels’ density distribution of BABI in Yaoundé (A) and Bangui (B). 

 
Figure 13. 50,000 sampled pixels’ spectral indices density distribution in Yaoundé (A) and Bangui (B). 

4. Discussions 

To come up with the BABI, it was tested that urban land 

surface brightness mixes environmental and built-up 

information. Using another set of manipulations using the 

8-bits recoded results of BABI and comparative indices, one 

can noticed that the built-up values are higher than those of the 

other land cover objects, although there are two cases of 

stretching (Figure 14). In Yaoundé where the forest cover has 

considerably decreased, exposing rough hilly slopes and rocky 

soils, all the LULC objects are detected in the high values and 

close to each other in the stretching interval [125-225]. 

Whereas in Bangui presenting an important forest coverage, 

less bare soil visibility, more shadowy rough high-altitude 

terrain and an important stream of the Ubangui river, LULC 
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objects are detected in lower values in between the stretching 

interval [15-185]. 

On 500 pixels extracted in the highest urbanized area with 

mixed LULC classes BABI, NDSI/BSI, shadow index and 

NDISI, the trends confirm the separation between objects. 

Therefore, built-up can be detected in high or low values in 

comparison with other LULC spectral indices. As shown in 

figure 14, trends of BABI are closed to SI but higher than 

NDSI, while NDISI has the lower values in Yaoundé. For 

Bangui, trends of the BABI are the lowest, while BSI, SI and 

NDISI are higher. As the BABI better separates LULC object 

features, NDISI can be otherwise complementary in detecting 

dark built-up features (in Yaoundé) and natural impervious 

surfaces (in Bangui) than effective buildings, as it is closer to 

soil (NDSI/BSI) and shadow (SI) features. 

Finally, BABI is regressed by soil indices, i.e., NDSI/BSI 

and the Shadow Index, to assess its relation with noise. The 	.1	values are the following (Figure 14 & Table 9): 

i) In Yaoundé, for BABI/NDSI, 	.1 � �0.42  and for 

BABI/SI, 	.1 � 0.24, for an average 	.1 � 0.33, lower than 

compared built-up indices. 

ii) In Bangui, for BABI/BSI, 	.1 � 0.55  and for 

BABI/SI,	.1 � �0.59 for an average 	.1 � 0.57, that is also 

lower than other indices. 

As the high correlation coefficients were assumed to express 

the level of noise between and around the built-up area, these 

lower values are another set of proofs supporting the efficiency 

of BABI to discriminate built-up from surrounding features. 

 
Figure 14. Post-processing spectral and statistical noise reduction efficiency of BABI. 
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Table 9. Compared 	.1 values standing for the post-processing noise prediction. 

 
Yaoundé Bangui 

Bright noise (NDSI) Dark noise (SI) |Average| Bright noise (BSI) Dark noise (SI) |Average| 

NDBI 0.96 - 0.85 0.9 0.77 - 0.84 0.8 

UI 0.88 - 0.82 0.85 0.81 - 0.74 0.77 

MNBI 0.88 - 0.64 0.76 0.72 - 0.75 0.73 

NDBSUI 0.48 - 0.41 0.44 0.71 - 0.6 0.65 

BABI - 0.42 0.24 0.33 0.55 - 0.59 0.57 

 

5. Conclusion 

The main goal of this research has been to reduce the land 

surface brightness and shadow noise that is very challenging 

for the built-up extraction in unplanned cities with mixed 

housing materials. The Brightness Adjusted Built-up Index, 

BABI, gives an improved visual layout with low built-up 

generalization, confirmed by overall accuracies of 96% and 

98.5% respectively in Yaoundé (Cameroon) and Bangui 

(Central African Republic), way higher than the four 

comparative spectral indices. Ongoing improvements consist 

in conducting the full process using a neural network. Further, 

the computation of BABI was tested in some urban subsets of 

Sentinel 2 satellite images with satisfactory results, but could 

not be completed for both whole areas of study because of 

clouds coverage. Presently, some tests are being conducted for 

other areas outside the tropics. One advantage of this method 

can be its potential integration in the population and housing 

census process of developing countries with low budget 

allocated. Thus, the BABI may represent an asset for an 

accurate mapping of human settlements and a better 

delineation of counting zones using freely accessible satellite 

images. 
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